MEDEA 3rd Project Meeting - Midterm Review Meeting

EARLY STAGE RESEARCHER

Yu-Chen Cheng

High repetition rate attosecond source for experiments with energy, PROJECT: angular and temporal resolution

Host institution: Supervisors: Lund University

May, 1st 2015

Nonlinear optics

Ultrafast optics

Dr. Mathieu Gisselbrecht (LUND)

Dr. Thomas Binhammer (VENT)

Dr. Robert Moshammer (MPIK)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the

Marie Skłodowska-Curie grant agreement No 641789

Atomic and molecular science

Start date: Research interests:

CURRICULUM VITAE

SCIENTIFIC SCOPE OF THE PROJECT

Develop the **high-repetition rate laser** (200 kHz) for electronic correlation and electron-nuclear coupling in small systems.

- The non-collinear optical parametric chirp pulse amplification (NOPA) system developed by VENT in collaboration with LUND
- Demonstrate the high repetition rate XUV attosecond light source with high harmonic generation (HHG).
- High repetition rate photoelectron spectroscopy with full energy, angular and temporal resolution performed with the high repetition rate laser.

SCIENTIFIC ACTIVITIES AND GOALS IN PROGRESS (Done)

- High-repetition rate laser (200 kHz)
 - > 2 NOPA stages system, CEP stabilized few-cycle laser (< 7 fs), >5 μJ.
 - > 3rd NOPA to improve the output power

• High Harmonic generation (HHG) and attosecond pulses

- The precise dispersion scan of the XUV spectrum
- The XUV-IR interferometer

• Photoelectron spectroscopy/microscopy

- Plasmonic on nanostructure (using PEEM)
- Ultrafast ionization and dissociation dynamics on molecules (using REMI)

SECONDMENTS AND SCIENTIFIC ACTIVITIES

- Secondment
 - Free Electron Laser (FEL) beam time with MPIK in FLASH
 - Sequential multiphoton process of the CH₃I (presented at the Gordon conference - 2016)
- Lund CIEL: Development of recoil spectrometer for coincidence measurements at Lund Laser Center.
 - Compact and a large volume of homogeneous magnetic field
 - **CIEL Design -** without magnetic nodes to have a better average resolution of the electron.

BL2 BL1/CAMP

CAREER DEVELOPMENT PLAN AND FUTURE ACTIVITIES

- Scientific activities:
 - Advanced Data Treatment
 - Molecular beam
 - High pulse energy OPCPA
- Soft skills:
 - Teaching
 - Computerized program
 - Academic writing
 - Other training courses

