VENTEON Company Introduction

MEDEA Kickoff Meeting

20.1.2015

Thomas Binhammer VENTEON Laser Technologies GmbH Hollerithallee 17 30419 Hannover www.venteon.com

VENTEON Laser Technologies GmbH 2015

Company Information

- VENTEON Laser Technologies GmbH was founded in 2008
- First laser systems in the market since 2004 (Nanolayers /MIT)
- Located in Hannover, Germany
- Small, but focussed on ultrashort pulses, scientific market

Selected customers worldwide:

Company Overview

In 2014, after many years of close collaboration, VENTEON eventually became a member of the Laser Quantum group!

Company Information

VENTEON[®] A LASER QUANTUM COMPANY

VENTEON | PULSE : ONE

Laser systems overview:

	FEMTOSECOND LASER SYSTEMS	FEMTOSECOND LASER SYSTEMS	FEMTOSECOND LASER SYSTEMS	FEMTOSECOND LASER SYSTEMS	FEMTOSECOND LASER SYSTEMS
	VENTEON PULSE : ONE-BASIC VENTEON PULSE : ONE-BASIC > 200 mW turn-key operation 'rock-solid' monolithic design	VENTEON PULSE : ONE-POWER PULSE : ONE-POWER > 6 nJ > 500 mW 650 - 1050 nm intergated pump laser	VENTEON PULSE : ONEULTRABBOAD	VENTEON PULSE : ONE-CP	VENTEON PULSE : ONE-OPCPA
	BASIC	POWER	ULI PABROAD	ଓ	OPCPASEED
Pulse duration	< 8 fs	< 8 fs	< 6 fs	< 6 fs	< 6 fs
Pulse energy (@ 80 MHz)	> 2 nJ	> 7 nJ	> 3 nJ	> 3 nJ	> 2.5 nJ
Average output power	> 200 mW	> 560 mW	> 240 mW	> 240 mW	> 200 mW
Spectral bandwidth	> 200 nm	> 200 nm	> 400 nm	> 400 nm	> 350 nm
Repetition Rate (MHz)	80 MHz	75 - 150 MHz	75 - 150 MHz	75 - 150 MHz	75 - 150 MHz
Additional 1030 nm output	-	-	0	0	•
Pump laser included	•	•*	•*	•*	•*
CEP stabilization	-	0	0	•	0
Repetition rate stabilization	-	0	0	0	0
Dimensions (mm)	260 x 600 x 114	475 x 600 x 165	475 x 600 x 165	750 x 600 x 165	750 x 600 x 165

^{*}also available without pump laser or integration of customers pump laser

optional

no option

standard

VENTEON | PULSE : ONE-ULTRABROAD

Benefits and Applications

- Shortest pulses commercially available with typical pulse duration below 5 fs!
- Ultrabroadband spectrum spanning one optical octave
- Direct CEP stabilization possible
- High power at 1030 nm for direct Yb amplifier seeding
- Direct OPCPA seeding with upgrade option for timing stabilization and CEP stabilization

Ultrabroad System running live at the Laser Munich 2013 with sub-5fs measured on-site for the full time of exhibit!

OPCPA SEED – Front-end Laser System for OPCPA seeding

- Based on the Ultrabroad Edition (UB) femtosecond oscillator
- Dual output for broadband signal seed pulses < 6 fs and narrowband 1030 nm radiation
- Octave-spanning spectral bandwidth supports pulse durations < 6 fs directly from the oscillator.
- Sufficient power @ 1030 nm directly form the native laser spectrum for seeding high-power amplifiers
- Bandwidth sufficient for a direct CEP stabilization without any additional spectral broadening by either a PCF or PPLN device.
- Low-noise DPSS pump laser and the *f*-to-2*f* interferometer directly on a monolithic all-water cooled breadboard.

VENTEON | PULSE : ONE-OPCPA

Specifications

- Broadband OPCPA Output (after filtering)
 - Spectral bandwidth > 350 nm (@ 10 dBc)
 - Pulse duration < 6 fs
 - Repetition rate: 80 MHz
 - Average output power > 200 mW
 - Pulse energy > 2.5 nJ

• CEP-lock without additional spectral broadening (optional), specifications above remain

Pump-Amplifier Seed Output

- Center wavelength: 1030 nm, Spectral bandwidth: 10 nm (FWHM)
- Spectrally filtered directly from the original VENTEON laser spectrum
- Pulse energy: free-space: > 30 pJ (> 2.4 mW) / fiber-coupled: > 12 pJ (> 1 mW)
- FC/APC fiber port at the laser enclosure for easy seed pick-up
- Pre-amplified for optimal amplifier seeding (optional)
- Pulse duration < 200 fs (Fourier-limited)

First commercial OPCPA system < 8fs *

Shorter pulses and higher repetition rate than multi-pass amplifier systems

Benefits and Applications

- Compact and robust design
- High repetion rate up to 1 MHz
- Ultrashort pulse duration < 8 fs
- Low-noise, seeded by
- CEP stable with slow feedback
- Ideal source for high harmonic generation or ionization and multiphoton experiments!

* In cooperation with Lund University

Benefits of an ultrabroadband starting spectrum:

No external spectral broadening necessary!

Schematic setup:

Main advantages:

- Simple, robust setup
- Oscillator bandwidth supports <6 fs pulses
- No nonlinearity needed for seed generation
- Intrinsically low noise and minor timing jitter
- Excellent CEP stability

first parametric amplification stage:

- 5 mm BBO, PVWC geometry, alpha = 2.4°
- seed energy 1.25 nJ \rightarrow amplification to 4.5 μ J

second parametric amplification stage:

- 5 mm BBO, PVWC geometry, alpha = 2.4°
- ▶ seed energy 3.4 μ J → amplification to 17 μ J

Numerical model for OPCPA

[1]: "Impact of temporal, spatial and cascaded effects on the pulse formation in ultra-broadband parametric amplifiers" Lang et al., Optics Express 21, 949-959 (2013)

VENTEON Laser Technologies GmbH 2015

Numerical model for OPCPA

VENTEON Laser Technologies GmbH 2015

Numerical model for OPCPA

Comparison with experimental data

- excellent agreement with the experiment
 - predictions for OPCPA systems with smaller foci sizes
 - scaling of the pulse energy
 - important for scaling to higher repetition rates

VENTEON PULSE : THREE

1.0 0.9 spectral power density [norm.] 0.8 0.7 -0.6 0.5 0.4 0.3 -0.2 0.1 0.0 600 700 800 900 1000 1100 1200 wavelength [nm]

Ultrashort pulses

Output parameters:

Ultrabroad bandwidth

Pulse energy:	10 µJ
Pulse duration:	6.3 fs
Rep. rate:	200 kHz
Peak power:	800 MW
Low noise:	<0.5% (rms)

Very low noise

CE-phase stabilization

VENTEON MEDEA

High repetition rate, few-cycle laser for HHG, XUV spectroscopy, PEEM...

Goals MEDEA

- Planned secondment with Lund
- increase level of cooperation
- Scaling-up of system to higher energy and photon flux

*data courtesy of C. Arnold, Lund University

Thank you for your attention!

We have moved to new lab and office space:

Technologie-Zentrum im Wissenschaftspark Hollerith-Allee 17 30419 Hannover