

Salvatore Stagira

Dipartimento di Fisica Politecnico di Milano

MEDEA kick off meeting – Berlin, 19-20 January 2015

Milano

Politecnico di Milano in a nutshell

- Two main campuses located in Milan, five more in Lombardy region
- ➤ ~6700 freshmen each year

PhD School Key facts & figures:

- □ 3 years of duration
- □ 18 Doctoral Programmes
- □ ~1100 PhD candidates
- □ 33% international students
- □ Candidates from 60+ countries

Physics Department @ POLIMI

5 research lines (>40 laboratories):

10 full professors
25 associate professors
14 assistant professors
17 technicians & admin.
~ 30 post-docs
~ 40 PhD students (Physics)

RL1 - Ultrashort light pulse generation and applications to the study of ultrafast phenomena in matter

- RL2 Solid state lasers and photonic devices
- RL3 Photonics for health, food and cultural heritage
- RL4 Epitaxial growth and nanostructure fabrication
- RL5 Electronic, optical and magnetic properties of low-dimensional systems

Intensive collaboration with CNR (Photonics and Nanotechnology Institute)

Expertise inherent to MEDEA

- Development and characterization of ultrafast and intense laser sources from the MIR to the UV
- > Study and exploitation of "classic" nonlinear optics
- Applications to ultrafast spectroscopy of inorganic, organic and biological materials
- Investigation of strong-field optical phenomena in atoms, molecules and nanostructures

Attosecond Science

Laboratories

MEDEA kick off meeting – Berlin, 19-20 January 2015

High-energy Attosecond Science Lab

Driving laser source:

Sub-4 fs pulses, 2.5-mJ energy 1 kHz repetition rate

XUV source: 250 as pulses, few nJ energy 17-50 eV energy range

UV pump-XUV probe:

Sub-2 fs **UV pulses**, few-µJ energy, 1 kHz by 3rd harmonic

MEDEA kick off meeting – Berlin, 19-20 January 2015

TOF-mass

spectrometer

Charge migration from NH₂ to COOH in 2 fs

XUV, 15-35 eV

sub-300 as

IR, 1.77 e

nenvlalanine

High-rep rate Attosecond Science Lab

Driving laser source: 5 fs pulses 2 mJ energy

10 kHz repetition rate

XUV source:

360 as pulses

15-30 eV energy range

Alexander von Humboldt Stiftung/Foundation

Mid-IR Laser Laboratory for Strong-Field Physics

TW Ti:sapphire laser system 60 fs, 120 mJ, 10 Hz **IR parametric source** 1.2 to 1.8 μm, 20 fs, 1.5 mJ

Wavelength, nm

interaction chamber

MEDEA kick off meeting – Berlin, 19-20 January 2015

Photon energy (eV)

Molecular Imaging Lab

Driving laser source: <22 fs pulses 15 mJ energy

1 kHz repetition rate

XUV spectrometer

- gratings @ 10 nm and 1 nm
- stigmatic/astigmatic
- harmonic polarization detection

VMI spectrometer for electrons up to 200 eV

Major research topics

MEDEA kick off meeting – Berlin, 19-20 January 2015

Current research topics

Study **ultrafast electronic motion in biomolecules** after prompt photoionization

→crucial role in fundamental biological mechanisms such as transmission of biological signals in proteins and DNA

in attosecond science

Follow and control **charge localization** and autoionization mechanisms in small molecules $(H_2, N_2, O_2,...)$

- Velocity Map Imaging (VMI)
- attosecond absorption spectroscopy

Current research topics

in attosecond science

Control **collective electron dynamics in nanostructured materials** (fs to sub-fs time scales)

→ Control of electron dynamics in nanomaterials can revolutionize modern electronics: much higher computation and communication speeds

Investigation of **correlated electron motion** in atoms and molecules

- Reaction Microscope technique
- → Making a movie of the full atomic/molecular dynamics after photoionization

Ultrafast Molecular Imaging

Molecular orbital tomography:

real time imaging of evolving electronic structures in complex molecules

- by high-order harmonics
- by laser induced electron diffraction (VMI)

- \rightarrow direct access to the structure of excited states
- \rightarrow visualization of conical intersections
- \rightarrow coherent control in chemical reaction

External activities: FERMI@ELETTRA

First seeded FEL user facility

	FEL 1	FEL 2
Energy	لار 20-100 لار	5-30 µJ
Photon energy tunability	14-62 eV	56-308 eV
Pulse duration	100 fs	100 fs

- Ideal source for investigating nonlinear resonant effects in the XUV region
- Access granted to best-ranked proposal submitted in Calls for Proposal

First beamtime granted to POLIMI (G. Sansone) in December 2012

Supervision of ESRs in MEDEA

MEDEA kick off meeting - Berlin, 19-20 January 2015

Early Stage Researcher (main supervision)

• ESR POLIMI-1:

WP 2.1 Femtosecond non-linear XUV spectroscopy

• ESR POLIMI-2:

WP 3.1 High harmonic spectroscopy of electronic structure and multi-electron dynamics

ESR AMPL-1	CEP-st	abilized	multi-kHz regenerative amplifiers for attosecond experiments	
1 st Supervisor : Dr. P.M. Paul (10%)			WP 1.1;Duration: 36 Months;PhD enrolment: Yes (considering a 9 month extension)	
Planned secondments	Start	Dur.	Content of the training	
POLIMI	27	4	Implementation of coincidence measurements with muli-kHz laser system for	
2 nd Supervisor		l .	the investigation of attosecond dynamics in diatomic molecules.	
Dr. G. Sansone (10%)			Research Management School (TSM)	
CEA	34	4	Development of CEP fast feedback loops.	
3 rd Supervisor			Knowledge of enterprises and surroundings (TSM)	
Dr. J. F. Hergott (10%)			Dynamical studies using HHG from aligned molecules (RTM)	
CAEN	38	1	Implementation of fast digitizers	
Dr. Alessandro lovene				
(7%) ESR AU-1 K	inctic o		alages apactra in discognistive ionization of distamic malagulas	
1 st Supervisor : Prof. L. Madsen (10%)		, 	WP 1.1; Duration: 36 Months; PhD enrolment: Yes	
Planned secondments	Start	Dur.	Content of the training	
2 nd Supervisor	26	4	Ab initio simulations of the dynamics of two-electron linear molecules on super computers	
Dr. A. Palacios (10%)			TSMs available at MAD	
AMPL	35	1	Managing time schedule production (TSM)	
3 rd Supervisor	00	'	How to manage and industrial project (TSM)	
Dr. F. Canova (10%)				
POLIMI	39	1	Interpretation of experimental data on dissociative ionization of N ₂ and O ₂	
Prof. M. Nisoli (10 %)			molecules	
ESR DESY Attosecond dynamics in conformer-selected amino a			Attosecond dynamics in conformer-selected amino acids	
1 st Supervisor : Prof. J. Küpper (15%))	WP 1.2; Duration: 36 Months; PhD enrolment: Yes	
Planned secondments	Start	Dur.	Content of the training	
PHOTEK	23	6	Design and optimization of Even-Lavie valve for fragile molecules.	
2 nd Supervisor			Investigation of the optimal conditions (backing pressure and temperature)	
Dr. P. Kapetanopoulos			for the generation of cold beams of conformer-selected aminoacids. TSMs	
(5%)			available at PHOTEK	
POLIMI 3 rd Supervisor	33	2	Management and optimization of renewable energy sources (TSM)	
Dr. G. Sansone (5%)			Second order autocorrelator (RTM)	
AU_exp	37	1	Adiabatic and non-adiabatic alignment techniques (RTM)	
Prof. H. Stapelfeldt (2%)	51	1	Introduction to scientific teaching (TSM)	
ESR FEMTO	J	1	Generation of mid-IR CEP-stabilized pulses	
1 st Supervisor : Dr. A. Assion (8%)			WP 4.1;Duration: 36 Months; PhD enrolment: Yes (considering a 9 month	
7 Supervisor : Dr. A. Assion (6%)			extension)	
Planned secondments	Start	Dur.	Content of the training	
POLIMI	15	3	Development of setups for the measurement and stabilization of CEP of mid-	
2 nd Supervisor:			IR pulses	
Prof. S. Stagira (10%)			Alignment of a hollow fiber compressor (RTM)	
CEA	29	2	Dynamical studies using HHG in aligned molecules	
3 rd Supervisor:			Innovation management in enterprise (TSM)	
Dr. T. Ruchon (10%)			Knowledge of enterprises and surroundings (TSM)	

Conclusions

- *Location:* Milano is a very dynamic city, ideal for ESRs
- *Human aspects:* POLIMI is a young, international environment stimulating sharing of ideas among ESRs and acquisition of *soft skills*
- Science: expertise, labs and activities fit the project goals and may stimulate interdisciplinary collaborations of ESRs with other scientists

