The Lund Attosecond Science Centre in the MEDEA network

PER JOHNSSON @ THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015

Lund

Lund University

- Founded in 1666
- 47 700 students (individuals)
- 7 500 employees
 - 840 professors
 - 4 350 lecturers/researchers and doctoral students
- Turnover EUR 850 million (USD 1 180 million)
 - 1/3 education, 2/3 research

Faculties

- Medicine
- Engineering
- Science
- Social Sciences
- Humanities and Theology
- Economics and Management
- Law
- Fine and Performing Arts (Music, Theatre, Fine Art)

The Lund Laser Centre (LLC)

- An organisation for laser, optics and spectroscopy research

Accessible laboratories

- High-power laser laboratories
- Atomic and molecular laser spectroscopy laboratories
- Coherent transient spectroscopy laboratory
- Femtochemistry laboratories
- Combustion diagnostics laboratories
- Mobile systems for coherent anti-Stokes Raman (CARS) measurements and laserinduced fluorescence.
- Mobile laser radar system
- Biomedical laser laboratories

The High-Power Laser Facility

			VUV nanosecond laser				
		1 kHz Ti:Sa CPA laser	200 kHz OPCPA	10 Hz Ti:Sa CPA laser			
L							

Ultra-high Intensity Laser Physics

Olle Lundh

Claes-Göran Wahlström

40 TW pulses @ 10 Hz

200 MeV electrons

10 MeV protons

18.9 nm X-rays (Betatron radiation)

The Lund Attosecond Science Centre

Johan Mauritsson Per Johnsson

Mathieu

Gisselbrecht

Cord Arnold

The high flexibility beamlines

The high flexibility beamlines

Noncollinear optical gating

M. Louisy, et al. manuscript in preparation

Transient absorption measurements

S. Bengtsson & E. Witting-Larsen, work in progress

Ionization time delays K. Klünder, *et al.*, *Phys. Rev. Lett.* **106**, 143002 (2011) Photon Energy (units of ω) Photon Energy (units of ω) Photon Energy (units of ω) $(21 \ 22 \ 23 \ 24 \ 25 \ 26 \ 0.2 \ 21 \ 22 \ 23 \ 24 \ 25 \ 26 \ 0.2 \ 21 \ 22 \ 23 \ 24 \ 25 \ 26 \ 0.2$

Double ionization E. P. Månsson, *et al.*, *Nature Phys.*, **10**, 207 (2014)

The high repetition rate beamline

The high repetition rate beamline

Collaboration with Venteon & Univ. Hannover

b) 200kHz rep. rate, 30s exposure

First PEEM measurements

Courtesy of Anders Mikkelsen

The high-intensity HHG beamline

U	
Driving laser	Ti:Saph CPA, 800 nm, 100 mJ, 35 fs, 10 Hz
Attosecond source	Pulse trains @ 17-95 eV
Development goals	Very energetic single attosecond pulses and trains for XUV-XUV pump probe
Applications	Multi-photon processes, Charge migration, coherent imaging
BOT OF	

The high-intensity HHG beamline

photon energy [eV]

X [µm]

The high-intensity HHG beamline

Process order

New split-and-delay unit

All-reflective IR autocorrelation

ESR LUND-1 (secondment @ Venteon, MPIK and CEA) Anne L'Huillier

WP 1.1: Development of high-repetition rate lasers for electronic correlation and electron-nuclear coupling in small systems

- Upgrade OPCPA & attosecond source
- **MS1** (M24): Demonstration of high rep-rate SAPs
- Develop and implement coincidence techniques at the source
- **D1.1** (M24) : Perform high-repetition rate photoelectron/-ion spectroscopy
- Implement compact XUV-IR pump-probe setup
- MS2 (M30): Demonstration of XUV-IR cross-correlation
- **D1.4** (M48): Perform pump-probe experiments with femtosecond and attosecond time resolution on large molecules

ESR LUND-2 (secondment @ Photek, DESY and MBI) Per Johnsson

WP 3.2: Ultrafast electron imaging

- Implement cold high-density molecular beam with VMIS
- Implement schemes for MFPAD measurements
- MS17 (M36): Static imaging using HHG
- D3.3 (M48): Dynamical structure by HHG

Lund training tasks

Video tutorials

- Reconstruction of attosecond pulses
- Introduction to strong-field physics

Research training modules (RTMs) & scientific courses

- Optimization of HHG
- Optical ray-tracing (FRED)
- Numerical methods using the TDSE (Prof. Schafer)
- Light-matter interaction

Transferrable skills modules (TSMs)

- Technical writing for publication
- Introduction to teaching and learning in higher education

2018: Final network meeting in Lund

