Presentation of the DESY node

DESY-CFEL - Controlled Molecule Imaging DESY-FLASH - CAMP @ FLASH

Jochen Küpper

Center for Free-Electron Laser Science (CFEL), DESY, Hamburg, Germany Department of Physics, University of Hamburg, Germany
The Hamburg Center for Ultrafast Imaging (CUI), Germany
Daniel Rolles - Deutsches Elektronen-Synchrotron DESI, Hamburg, Germany

UH
iit

Controlled Molecule Imaging

Complex molecules in the gas-phase Understanding the structure-function relationship

Complex molecules in the gas-phase

Understanding the structure-function relationship

The structure-function relationship of electronic dynamics Conformers of amino acids: glycine and phenylalanine

The structure-function relationship of electronic dynamics Conformers of amino acids: glycine and phenylalanine

The structure-function relationship of electronic dynamics Conformers of amino acids: glycine and phenylalanine

Toward time-resolved imaging of chemical dynamics kHz-rate manipulation experiments

Toward time-resolved imaging of chemical dynamics kHz-rate manipulation experiments

Trippel, Mullins, Müller, Kienitz, Długołęcki, JK, Mol. Phys. 111, 1738-1743 (2013, Bretislav Friedrich Festschrift)

Electric manipulation of the motion of neutral molecules

- separating species according to m / μ -

Filsinger, Erlekam, von Helden, JK, Meijer, Phys. Rev. Lett. 100, 133003 (2008)

Electric manipulation of the motion of neutral molecules - separating species according to $\mathrm{m} / \mu-$

Filsinger, Erlekam, von Helden, JK, Meijer, Phys. Rev. Lett. 100, 133003 (2008) Wohlfart, Graetz, Haak, Meijer, JK Phys. Rev. A 77, 031404(R) (2008) Holmegaard, Nielsen, Nevo, Stapelfeldt, Filsinger, JK, Meijer, Phys. Rev. Lett. 102, 023001 (2009)

Electric manipulation of the motion of neutral molecules - separating species according to $\mathrm{m} / \mu-$

Physics and chemistry of cold molecules
Filsinger, Erlekam, von Helden, JK, Meijer, Phys. Rev. Lett. 100, 133003 (2008) Wohlfart, Graetz, Haak, Meijer, JK Phys. Rev. A 77, 031404(R) (2008) Holmegaard, Nielsen, Nevo, Stapelfeldt, Filsinger, JK, Meijer, Phys. Rev. Lett. 102, 023001 (2009)

Nuclear-spin isomers of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ Structural details

Horke, Chang, Długołęcki, JK, Angew. Chem. Int. Ed. 53, 11965 (2014, VIP)

Nuclear-spin isomers of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ Structural details

$$
(12) \Psi=-\Psi
$$

$\Gamma_{\Psi_{\mathrm{tot}}}=\Gamma_{\Psi_{\mathrm{ns}}} \otimes \Gamma_{\Psi_{\mathrm{rve}}}$

Separating para and ortho water

Horke, Chang, Długołęcki, JK, Angew. Chem. Int. Ed. 53, 11965 (2014, VIP)

Separating para and ortho water

Conformer selection with the m / μ deflector

Filsinger, JK, Meijer, Hansen, Maurer, Nielsen, Holmegaard, Stapelfeldt, Angew. Chem. Int. Ed. 48, 6900 (2009)

Fixing molecules in space 3D orientation

Holmegaard, Nielsen, Nevo, Stapelfeldt, Filsinger, JK, Meijer, Phys. Rev. Lett. 102, 023001 (2009) Nevo, Holmegaard, Nielsen, Hansen, Stapelfeldt, Filsinger, Meijer, JK, Phys. Chem. Chem. Phys. 11, 9912 (2009)

Scenarios of rotational dynamics in OCS (X, v=0, J=0) Adiabatic alignment with a 485 ps pulse

Scenarios of rotational dynamics in OCS (X, v=0, J=0) Intermediate-case alignment with a 50 ps pulse

Scenarios of rotational dynamics in OCS (X, v=0, J=0) Intermediate-case alignment with a 50 ps pulse

experiment

A simple two state wave packet, a working coherent control experiment and a strongly-driven quantum pendulum

Scenarios of rotational dynamics in OCS (X, v=0, J=0) Intermediate-case alignment with a 50 ps pulse

experiment

A simple two state wave packet, a working coherent control experiment and a strongly-driven quantum pendulum

Achievable degree of Alignment is comparable to adiabatic case!

Trippel, Mullins, Müller, Kienitz, Omiste, Stapelfeldt, González Férez, JK , Phys. Rev. A 89, 051401 (R) (2014)

Scenarios of rotational dynamics in OCS $(X, v=0, J=0)$ Non-adiabatic orientation with a 500 ps pulse

Scenarios of rotational dynamics in OCS $(X, v=0, J=0)$ Non-adiabatic orientation with a 500 ps pulse

Scenarios of rotational dynamics in OCS (X, v=0, J=0) Non-adiabatic orientation with a 500 ps pulse

Scenarios of rotational dynamics in OCS $(X, v=0, \mathrm{~J}=0)$ Non-adiabatic orientation with a 500 ps pulse

Trippel, Mullins, Müller, Kienitz, González Férez, JK, arXiv:1409.2836 [physics]

Scenarios of rotational dynamics in OCS $(X, v=0, J=0)$ Non-adiabatic orientation with a 500 ps pulse

Trippel, Mullins, Müller, Kienitz, González Férez, JK, arXiv:1409.2836 [physics]

Imaging structural dynamics (nuclear and electronic)

MFPADs of molecular aggregates using a pure beam of indole-water

CFEL ASG Multi-Purpose Chamber (CAMP)

 A traveling Free-Electron Laser endstation (now at FLASH)

JK, Stern, et al (53 authors), Phys. Rev. Lett., 112, 083002 (2014)

Coherent (fs) X-ray diffractive imaging of 2,6-diiodobenzonitrile Analysis of anisotropic part of molecular x-ray diffraction pattern

diffraction data yields

$$
\begin{array}{ll}
<\cos ^{2} \theta>_{20}=0.8 & \text { (vs. } 0.84) \\
r(I-I) \approx 800 \mathrm{pm} & \text { (vs. } 700 \mathrm{pm})
\end{array}
$$

Photoelectron diffraction of aligned molecules $\mathrm{F}(1 \mathrm{~s})$ ionization of 1-ethynyl-4-fluorobenzene

detector

Photoelectron angular distribution difference between aligned and randomly oriented molecules as function of electron kinetic energy

Imaging charge transfer in iodomethane upon x-ray photoabsorption

- Break up the molecule: strong-field ionization with a near-infrared (NIR) laser pulse - Knock out inner-shell electrons from the iodine atom with the delayed x-ray pulse - Vary the delay to tune the distance between the fragments

Light sources at DESY Photon Science

- CAMP @ FLASH - a BMBF supported program to convert CAMP into a (the first) permanent endstation at FLASH
- Installation, commissioning, and operation headed by Helmholtz Young Investigator Group (Daniel Rolles)
- local coordination from summer 2015 by Benjamin Erk
- MEDEA coordination by Daniel Rolles (and Jochen Küpper)

part II - experiments at free-electron lasers (FELs) CFEL-ASG Multi-Purpose endstation

Assembly of CAMP@FLASH-BL1

part II - experiments at free-electron lasers (FELs) CFEL-ASG Multi-Purpose endstation

Assembly of CAMP@FLASH-BL1

part II - experiments at free-electron lasers (FELs) CFEL-ASG Multi-Purpose endstation

Assembly of CAMP @FLASH-BL1

CAMP - experiments at free-electron lasers (FELs) CFEL-ASG Multi-Purpose endstation

A variety of detectors available
electron and ion spectrometers
(REMI/COLTRIMS, VMI)

two planes of large-area pnCCD photon detectors

front pnCCD is movable in-situ, rear pnCCD has fixed gap and preset position

Both charged-particle spectrometers can be operated with delay line detectors (coincidence mode) or MCP/phosphor screen detectors
(covariance mode)

Summary

- Generation of well defined samples
- separation of quantum states, structural isomers, cluster species
- Fixing molecules in space
- one- and three-dimensional alignment and orientation
- Imaging of molecules
- x-ray and electron diffraction, ion and electron momentum imaging
- CAMP @ FLASH
- a permanent endstation at FLASH for AMO/imaging experiments
- ESR DESY: Attosecond dynamics in conformer-selected amino acids
- ESR training/secondments
- "sample preparation" - cold intense beams, species selection, alignment and orientation concepts
- (imaging) experiments with complex molecules

Acknowledgments

CFEL Controlled Molecule Imaging Group

We are looking for motivated colleagues - please see http://desy.cfel.de/cid/cmi/opportunities

Acknowledgments CAMP @ FLASH

Daniel Rolles ${ }^{1,2,12}$, Benjamin Erk ${ }^{1,2}$, Cédric Bomme ${ }^{1}$, Evgeny Savelyev ${ }^{1}$, Jonathan Correa ${ }^{1}$, Jan P. Müller³, Angad Swiderski¹, Rolf Treusch¹, Rebecca Boll ${ }^{1,2,4}$, Barbara Keitel ${ }^{11}$, Elke Plönjes ${ }^{1}$, Günter Brenner ${ }^{1}$, Siarhei Dziarzhytski ${ }^{1}$, Marion Kuhlmann ${ }^{1}$, Stefan Düsterer ${ }^{1}$, Kai Tiedtke ${ }^{1}$, Heinz Graafsma ${ }^{1}$, Thomas Tilp ${ }^{5}$, Lars Gumprecht ${ }^{5}$, Henry Chapman ${ }^{5}$, Mario Sauppe ${ }^{2}$, Daniela Rupp ${ }^{2}$, Thomas Zeschke ${ }^{6}$, Frank Siebert ${ }^{6}$, Robert Hartmann ${ }^{7}$, Lothar Strüder ${ }^{7}$, Günter Hauser ${ }^{8}$, Simone Techert ${ }^{1,9}$, Ilme Schlichting ${ }^{10}$, Stefan Eisebitt ${ }^{3}$, Joachim Ullich ${ }^{2,4,11}$, Robert Moshammer ${ }^{2,4}$, Thomas Möller ${ }^{3}$

1. Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
2. Max Planck Advanced Study Group at Center for Free-Electron Laser Science (CFEL), Hamburg, Germany
3. Technische Universität Berlin, Berlin, Germany
4. Max-Planck-Institut für Kernphysik, Heidelberg, Germany
5. Center for Free-Electron Laser Science (CFEL), DESY, Hamburg, Germany
6. Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
7. PNSensor GmbH, München, Germany
8. Max-Planck-Institut für extraterrestrische Physik, Garching, Germany
9. Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
10. Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany
11. Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
12. J.R. MacDonald Laboratory, Kansas State University, Manhattan, KS, USA

Acknowledgments Collaborators

Center for Free-Electron Laser ScienceHenry N. Chapman, Richard Kirian, Anton Barty, et alFranz Kärtner, Oliver Mücke, Hong Ye, et alTheory: Robin Santra, et al
MPG: Melanie Schnell, et a
University of AarhusHenrik Stapelfeldt, Lotte Holmegaard,Jens H. Nielsen, Jonas L. Hansen, Jochen Maurer,Lauge Christensen, Jan Thøgersen, et al
Lars Bojer Madsen, et al
Universidad de Granada
Rosario González-Férez, Juan J. Omiste
University of Basle
Stefan Willitsch, Daniel Rösch
Australian National University
Andrei V. Rode, Niko Eckerskorn, et al
University of Hamburg
Christian Kränkel, Günter Huber
DESY
Daniel Rolles, Rebecca Boll, Benjamin Erk, et alJens Viefhaus
RAS Moscow
Boris Sartakov

Max Born Institute

Marc Vrakking, Arnaud Rouzée, et al

Fritz-Haber-Institut der MPG

Gerard Meijer, Frank Filsinger, et al

MPI for Nuclear Physics

Joachim Ullrich, Robert Moshammer, et al

MPI for Medical Research

Ilme Schlichting, et al
Lund University
Per Johnsson
Kansas State University
Artem Rudenko, Vinod Kumarapan, et al
Arizona State University
Richard Kirian
John C.H. Spence, et al
MPG Semiconductor Laboratory, PNSensor GmbH
Lothar Strüder, Heike Soltau, Robert Hartmann, et al
SLAC
Christoph Bostedt, Sebastien Boutet, John Bozek, Joe Robinson, Ryan Coffee, Alan Fry, Bill White

Announcements

We are looking for motivated colleagues, please see http://desy.cfel.de/cid/cmi/opportunities

The Hamburg Conference on Femtochemistry Femto XII, Hamburg, DE, 12.-17. July 2015

Controlled Molecule Imaging

