Presentation of the DESY node DESY-CFEL – Controlled Molecule Imaging DESY-FLASH – CAMP @ FLASH

Jochen Küpper

Center for Free-Electron Laser Science (CFEL), DESY, Hamburg, Germany Department of Physics, University of Hamburg, Germany The Hamburg Center for Ultrafast Imaging (CUI), Germany **Daniel Rolles – Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany**

ASSOCIATION

Complex molecules in the gas-phase Understanding the structure-function relationship

Complex molecules in the gas-phase Understanding the structure-function relationship

The structure-function relationship of electronic dynamics Conformers of amino acids: glycine and phenylalanine

von Helden, Compagnon, Blom, Frankowski, Erlekam, Oomens, Brauer, Gerber, Meijer, *Phys. Chem. Chem. Phys.* **10**, 1248 (2008) Miller, Clary, Meijer, *J. Chem. Phys.* **122**, 244323 (2005)

The structure-function relationship of electronic dynamics Conformers of amino acids: glycine and phenylalanine

von Helden, Compagnon, Blom, Frankowski, Erlekam, Oomens, Brauer, Gerber, Meijer, *Phys. Chem. Chem. Phys.* **10**, 1248 (2008) Miller, Clary, Meijer, *J. Chem. Phys.* **122**, 244323 (2005)

The structure-function relationship of electronic dynamics Conformers of amino acids: glycine and phenylalanine

von Helden, Compagnon, Blom, Frankowski, Erlekam, Oomens, Brauer, Gerber, Meijer, *Phys. Chem. Chem. Phys.* **10**, 1248 (2008) Miller, Clary, Meijer, *J. Chem. Phys.* **122**, 244323 (2005)

Toward time-resolved *imaging of chemical dynamics* kHz-rate manipulation experiments

Trippel, Mullins, Müller, Kienitz, Długołęcki, JK, Mol. Phys. 111, 1738-1743 (2013, Bretislav Friedrich Festschrift)

Toward time-resolved *imaging of chemical dynamics* kHz-rate manipulation experiments

1 mJ, 30 fs 10 mJ, 40 fs–500 ps @ 1 kHz

Trippel, Mullins, Müller, Kienitz, Długołęcki, JK, Mol. Phys. 111, 1738-1743 (2013, Bretislav Friedrich Festschrift)

1 1 1 1 1 1 1 1 1

Electric manipulation of the motion of neutral molecules – separating species according to m/µ –

Filsinger, Erlekam, von Helden, JK, Meijer, *Phys. Rev. Lett.* **100**, 133003 (2008) Wohlfart, Graetz, Haak, Meijer, JK *Phys. Rev.* A **77**, 031404(R) (2008) Holmegaard, Nielsen, Nevo, Stapelfeldt, Filsinger, JK, Meijer, *Phys. Rev. Lett.* **102**, 023001 (2009)

time-of-flight mass spectrometer MCP 0.22 m (0.40 m)

Electric manipulation of the motion of neutral molecules separating species according to m/µ – E (kV/cm) y (mm) 120 time-of-flight 10 kV 2 mass spectrometer 100 www.rsc.org/pc 14 November 2011 | Pages 18683–19174 etection laser MCP ctor 0.22 m (0.40 m) 0.15 m

Physics and chemistry of cold molecules

Filsinger, Erlekam, von Helden, JK, Meijer, *Phys. Rev. Lett.* **100**, 133003 (2008) Wohlfart, Graetz, Haak, Meijer, JK *Phys. Rev.* A **77**, 031404(R) (2008) Holmegaard, Nielsen, Nevo, Stapelfeldt, Filsinger, JK, Meijer, *Phys. Rev. Lett.* **102**, 023001 (2009)

Electric manipulation of the motion of neutral molecules – separating species according to m/µ –

Filsinger, Erlekam, von Helden, JK, Meijer, *Phys. Rev. Lett.* **100**, 133003 (2008) Wohlfart, Graetz, Haak, Meijer, JK *Phys. Rev.* A **77**, 031404(R) (2008) Holmegaard, Nielsen, Nevo, Stapelfeldt, Filsinger, JK, Meijer, *Phys. Rev. Lett.* **102**, 023001 (2009)

Nuclear-spin isomers of water (H₂O) Structural details

H ₂ 0	ortho	-H ₂ 0
$ \begin{array}{c} 9_{19} \\ 6_{51} \\ 8_{17} \\ 7_{35} \\ 5_{51} \\ \end{array} $	$ \begin{array}{c} 7_{43} \\ 9_{09} \\ 8_{27} \\ \hline \\ 7_{25} \\ \hline \\ 6_{43} \\ \end{array} $	$\begin{array}{c} 6_{52} \\ 7_{34} \\ \hline \\ 8_{18} \\ 5_{50} \\ \hline \\ \end{array}$
$6_{33} $	$ \begin{array}{c} 5_{41} \\ 7_{07} \\ 6_{25} \\ 4_{41} \\ 5_{23} \\ \end{array} $	
$ \begin{array}{c} 5_{15} \\ 3_{31} \\ 4_{13} \\ \end{array} \\ 3_{13} \\ 2_{11} \\ 1_{11} \\ \end{array} $	$ \begin{array}{c} 5_{05} \\ 4_{23} \\ 3_{21} \\ 3_{21} \\ 3_{21} \\ 1_{01} \\ 1_{01} \\ \dots $	3_{30} —
A_2	B ₁	 B ₂

Nuclear-spin isomers of water (H₂O) **Structural details**

Separating para and ortho water

Separating para and ortho water

Conformer selection with the m/ μ deflector

Filsinger, Erlekam, von Helden, JK, Meijer, *Phys. Rev. Lett.* **100**, 133003 (2008) Filsinger, JK, Meijer, Hansen, Maurer, Nielsen, Holmegaard, Stapelfeldt, *Angew. Chem. Int. Ed.* **48**, 6900 (2009)

Fixing molecules in space 3D orientation

Holmegaard, Nielsen, Nevo, Stapelfeldt, Filsinger, JK, Meijer, Phys. Rev. Lett. 102, 023001 (2009) Nevo, Holmegaard, Nielsen, Hansen, Stapelfeldt, Filsinger, Meijer, JK, Phys. Chem. Chem. Phys. 11, 9912 (2009)

Scenarios of rotational dynamics in OCS (X, v=0, J=0) Adiabatic alignment with a 485 ps pulse

Scenarios of rotational dynamics in OCS (X, v=0, J=0) Intermediate-case alignment with a 50 ps pulse

experiment

Scenarios of rotational dynamics in OCS (X, v=0, J=0) Intermediate-case alignment with a 50 ps pulse

experiment

Scenarios of rotational dynamics in OCS (X, v=0, J=0) Intermediate-case alignment with a 50 ps pulse

experiment

Imaging structural dynamics (nuclear and electronic)

MFPADs of molecular aggregates using a pure beam of indole-water

<u>CFEL ASG Multi-Purpose Chamber (CAMP)</u> **A traveling Free-Electron Laser endstation (now at FLASH)**

JK, Stern, et al (53 authors), Phys. Rev. Lett., 112, 083002 (2014)

MCP + Phosphor Screen

Holey Mirror

FEL

YAG/TSL

Coherent (fs) *X-ray diffractive* imaging of 2,6-diiodobenzonitrile **Analysis of anisotropic part of molecular x-ray diffraction pattern**

JK, Stern, et al (53 authors), Phys. Rev. Lett., 112, 083002 (2014)

Photoelectron diffraction of aligned molecules F(1s) ionization of 1-ethynyl-4-fluorobenzene

Photoelectron angular distribution difference between aligned and randomly oriented molecules as function of electron kinetic energy

Boll, Rolles, et al (25 authors), Phys. Rev. A 88, 061402(R) (2013)

Imaging *charge transfer* in iodomethane upon x-ray photoabsorption

- Break up the molecule: strong-field ionization with a near-infrared (NIR) laser pulse
- Vary the delay to tune the distance between the fragments

At small distances, the valence electrons can freely move within the molecule.

NIR X-ray NIR delay time

In the transition regime, the electrons exhibit a certain degree of localization.

At large separations, the probability of electron transfer becomes negligible.

• Knock out inner-shell electrons from the iodine atom with the delayed x-ray pulse

X-ray

Erk, et al (21 authors), *Science* **345**, 288 (2014)

Light sources at DESY Photon Science

- CAMP @ FLASH a BMBF supported program to convert CAMP into a (the first) permanent endstation at FLASH
- Installation, commissioning, and operation headed by Helmholtz Young Investigator Group (Daniel Rolles)
 - local coordination from summer 2015 by Benjamin Erk
 - MEDEA coordination by Daniel Rolles (and Jochen K
 üpper)

Assembly of CAMP@FLASH-BL1

Assembly of CAMP@FLASH-BL1

Assembly of CAMP@FLASH-BL1

A variety of detectors available

electron and ion spectrometers (REMI/COLTRIMS, VMI)

ion imaging imaging of scattered and fluorescent photons FEI electron imaging

Both charged-particle spectrometers can be operated with delay line detectors (coincidence mode) or MCP/phosphor screen detectors (covariance mode)

two planes of large-area pnCCD photon detectors

front pnCCD is movable in-situ, rear pnCCD has fixed gap and preset position

Summary

- Generation of well defined samples
 - separation of quantum states, structural isomers, cluster species
- Fixing molecules in space
 - one- and three-dimensional alignment and orientation
- Imaging of molecules
 - x-ray and electron diffraction, ion and electron momentum imaging
- CAMP @ FLASH
 - a permanent endstation at FLASH for AMO/imaging experiments
- ESR DESY: Attosecond dynamics in conformer-selected amino acids
- ESR training/secondments
 - "sample preparation" cold intense beams, species selection, alignment and orientation concepts
 - (imaging) experiments with complex molecules

Example video: http://desy.cfel.de/cid/cmi/outreach/jove_video

Acknowledgments CFEL Controlled Molecule Imaging Group

erc

DÈŚY

We are looking for motivated colleagues – please see http://desy.cfel.de/cid/cmi/opportunities

Salah Awel **Bastian Deppe** Karol Długołęcki Jennifer Dodoo **Alexander Franke Daniel Gusa** Pau Gonzalez **Daniel Horke Zhipeng Huang** Jens S. Kienitz Thomas Kierspel Nele L.M. Müller **Terry Mullins** Tim Ossenbrüggen Nils Roth Igor Rubinskiy **Tim Schmidt Nicole Teschmit Sebastian Trippel Fenglin Wang** Joss Wiese Lu Wu

HELMHOLTZ **ASSOCIATION**

Acknowledgments CAMP @ FLASH

Daniel Rolles^{1,2,12}, Benjamin Erk^{1,2}, Cédric Bomme¹, Evgeny Savelyev¹, Jonathan Correa¹, Jan P. Müller³, Angad Swiderski¹, Rolf Treusch¹, Rebecca Boll^{1,2,4}, Barbara Keitel¹, Elke Plönjes¹, Günter Brenner¹, Siarhei Dziarzhytski¹, Marion Kuhlmann¹, Stefan Düsterer¹, Kai Tiedtke¹, Heinz Graafsma¹, Thomas Tilp⁵, Lars Gumprecht⁵, Henry Chapman⁵, Mario Sauppe², Daniela Rupp², Thomas Zeschke⁶, Frank Siebert⁶, Robert Hartmann⁷, Lothar Strüder⁷, Günter Hauser⁸, Simone Techert^{1,9}, Ilme Schlichting¹⁰, Stefan Eisebitt³, Joachim Ullrich^{2,4,11}, Robert Moshammer^{2,4}, Thomas Möller³

- 1. Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- 2. Max Planck Advanced Study Group at Center for Free-Electron Laser Science (CFEL), Hamburg, Germany
- 3. Technische Universität Berlin, Berlin, Germany
- 4. Max-Planck-Institut für Kernphysik, Heidelberg, Germany
- 5. Center for Free-Electron Laser Science (CFEL), DESY, Hamburg, Germany
- 6. Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
- 7. PNSensor GmbH, München, Germany
- 8. Max-Planck-Institut für extraterrestrische Physik, Garching, Germany
- 9. Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
- 10. Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany
- 11. Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
- 12. J.R. MacDonald Laboratory, Kansas State University, Manhattan, KS, USA

Acknowledgments Collaborators

Center for Free-Electron Laser Science

Henry N. Chapman, Richard Kirian, Anton Barty, et al Franz Kärtner, Oliver Mücke, Hong Ye, et al Theory: Robin Santra, et al MPG: Melanie Schnell, et al

University of Aarhus

Henrik Stapelfeldt, Lotte Holmegaard, Jens H. Nielsen, Jonas L. Hansen, Jochen Maurer, Lauge Christensen, Jan Thøgersen, et al Lars Bojer Madsen, et al

Universidad de Granada Rosario González-Férez, Juan J. Omiste

University of Basle Stefan Willitsch, Daniel Rösch

Australian National University Andrei V. Rode, Niko Eckerskorn, et al

University of Hamburg Christian Kränkel, Günter Huber

DESY **Daniel Rolles**, Rebecca Boll, Benjamin Erk, et al Jens Viefhaus

RAS Moscow Boris Sartakov **Max Born Institute**

Marc Vrakking, Arnaud Rouzée, et al Fritz-Haber-Institut der MPG Gerard Meijer, Frank Filsinger, et al **MPI for Nuclear Physics** Joachim Ullrich, Robert Moshammer, et al

MPI for Medical Research Ilme Schlichting, et al

Lund University Per Johnsson

Kansas State University Artem Rudenko, Vinod Kumarapan, et al **Arizona State University**

Richard Kirian John C.H. Spence, et al

MPG Semiconductor Laboratory, PNSensor GmbH Lothar Strüder, Heike Soltau, Robert Hartmann, et al

SLAC Christoph Bostedt, Sebastien Boutet, John Bozek, Joe Robinson, Ryan Coffee, Alan Fry, Bill White

We are looking for motivated colleagues – please see http://desy.cfel.de/cid/cmi/opportunities

Announcements

We are looking for motivated colleagues, please see http://desy.cfel.de/cid/cmi/opportunities

The Hamburg Conference on Femtochemistry Femto XII, Hamburg, DE, 12.–17. July 2015

SCIENCE **Controlled Molecule Imaging**